Factors Causing Landslides Associated with Cutting Works in the Terrain of the Paleogene Kishima Group

Hitosi Ono, Osamu Ide and Toshiya Maezima

Abstract

Expressway construction works in Japan have recently been undertaken more extensively in mountainous regions than in flat areas. This has resulted in an increase in landslides and slope failures triggered by cutting works. In road construction involving cutting, such landslides and slope failures are problems of primary concern.

The Western Kyushu Expressway (Takeo-Sasebo Road) extends through a hilly area spanning 22.1 km from Daito-cho, Sasebo-City, Nagasaki Prefecture to Higashi-Kawanobori-machi, Takeo-City, Saga Prefecture (Fig. 1). This expressway involves 266 locations of cutting work. It is situated in an area where the Paleogene Kishima Group is extensively distributed. Landslides occurred at 57-i.e., 21% -of these 266 locations. Most of the slides are initial landslides of the bare rock. As present technology cannot accurately predict the occurrence of such initial landslides, the construction works were carried out under close observation and surveying, and also made use of computerized execution management.

The elaborate surveying operations throughout the period of these road construction enabled us to gather detailed data on topography, geology of slope faces and condition of the works at the time of each incident. Authors have conducted a factor analysis on the basis of these accumulated data to classify warning signs and to predict landslides associated with road construction works in regions of similar topography and geology.

In examining the frequency of occurrences of landslides, authors gave 32 items as factors (Table 1) to the topography, geology and the structural condition of the road. Locations with complete data on the 32 factors are 52 slided slope faces and another 83 non-slided ones. The above abundant data enabled to apply the mathematical quantification theory II.

Analyses were carried out in three stages of the preliminary, the schematic and the detailed design, because available data were different from stage to stage. Studies were also carried out on the factors causing large-scale landslide and comparatively small collapses. The following is an outline of the results of the analytical work.

1. Results of analyses in the preliminary design stage.

In the preliminary design stage, analyses were made on the items and categories shown in Table 3. Fig. 39 shows the obtained right discrimination rates and correlation ratios and
their relation to the number of available factors.

The purpose at this stage is recognition of a general tendency. Taking the number of factors as 4, the both right discrimination rate and correlation ratio are 97% at the respective largest value and authors made use of 4 factors with large, partial correlation coefficient for analysis. They are (1) plane alignment of the route, (2) location of cutting, (3) sectional profile of the slope and (4) knick lines. The category scores of each item obtained and the ranges of items are shown in Table 4.

The sample scores obtained by way of each category score on the 4 items were classified into 10 grades and the rate of slide occurrence and non-occurrence by the grade is shown in Table 5. That is to say, the landslide occurrence rates are 91%, 43%, and 14% respectively where the sample scour is over 0.1850, between 0.1850 and 0.0471 and under 0.0471.

② Results of analyses in the schematic design stage.

In the schematic design stage, 20 items and categories shown in Table 7 were extracted from the findings of the primary geological survey (site surface exploration, geological reconnaissance and rough boring examination) and from measured plans (1 : 1,000).

The obtained right discrimination rate and correlation ratio and their relations to the number of items are shown in Fig.41. According to Fig.41, the correlation ratio diminishes where the number of items are less than 12 and the right discrimination rate of 12 items (90.7%) is almost equal to the largest value. Therefore, analyses were conducted with 12 items with the large partial correlation coefficient. Table 8 shows the category scores and item ranges thus obtained.

The sample scores obtained from each category score of the 12 items are divided into 10 grades. Number of the slide and non-slide sites and their ratio in each grade are shown in Table 9. The landslide occurrence rates are 94%, 48% and 2% respectively where the sample score rates are over 0.2982, between -0.0641 and 0.2981 and below -0.0641.

③ Results of analyses in the detailed design stage.

Since more detailed data are obtainable in the detailed design stage, 27 items shown in Table 11 were selected. The obtained right discrimination rate and correlation ratio and their relation to the number of items are shown in Fig.43. According to Fig.43, the correlation ratio diminishes when the number of items is less than 21 and right discrimination rate (89.8%) becomes 97% of the largest value when the number of items is 21. Therefore, analysis was carried out with use of 21 items by large partial correlation coefficients. Table 12 shows the category scores and item ranges thus obtained.

The sample scores obtained by using each category score of the 21 items were classified into 10 grades and number of slide occurrence and non-occurrence at sites in each grade is shown in Table 13. The sample scores are over 0.4236 in all the sites where landslide occurred and they are below -0.1492 in the sites where landslide did not occurred.

④ Results of factor analyses regarding of landslide types.

In analytical study of factors by landslide types, authors provided the same items and categories as in the detailed design stage, but the number of items actually available was no more than 20 since there were only 52 samples.

The right discrimination rate and correlation ratio obtained and their relation to the number of items are shown in Fig.45. There are some inconsistencies in right discrimination rate, but the correlation is nearly constant when the number of items are over 15, and the 15 items with large partial correlation coefficients are used in the analysis. The category scores and item ranges obtained in this way for each item are shown in Table 16.

The sample scores obtained from each category score of the 15 items were classified into 10 grades. The number of occurrences of slope failures and landslides and their ratios by the grade are shown in Table 17. In summary, all the cites where the values of sample scores are
above 0.3469 and below -0.1179 are respectively of slope failure type and landslide type.

The above is the statement of the results of factor analysis of landslides conducted in 3 stages of the preliminary, the schematic and the detailed design stage. The right discrimination rates were respectively 74.1%, 90.6% and 89% and correlation coefficients were 0.5988, 0.7772 and 0.8164 in the 3 stages. The results are considered helpful in predicting landslides in road construction works in areas with similar topography and geology. However, to facilitate references in planning and executing cutting works authors have provided Table 19, which shows the degrees of contribution of each item in triggering a landslide a judged from a general point of view. The 10 items rated A are considered major contributors to landslides and therefore they must be scrutinized as primary factors for study. Those 12 items rated B are considered to have a fair amount of contribution also, even though not as much as those in A, and due attention must be paid to them. Those 11 items rated C do not contribute greatly to landslides but need be reviewed accordingly.

1 はじめに

わが国における高速道路の建設は、従来の平地部を主体とする鉱貫道の時代から、近年は山間部を主体とする横断道路の時代に移行し、道路建設において切土工事が多くなっている。さらに、高規格幹線道路網の整備に伴って、山間部における道路建設がふえてることが予想される。

このような切土工事の多い道路建設における最大の問題点は、切土工事に際して地すべりやの裏面の崩れが発生することである。道路計画が、すでに地すべりが発生している地帯、あるいは地すべり指定地を通過することがないようにになっている場合には、事前に総合的な調査を行うことによって、十分な地すべり対策を講じた設計・施工を行うことが可能である。しかしながら、実際にには、見落とし地すべり地とは考えられないような箇所で、地すべりやの裏面の崩れが発生し、急きょ調査を行って対策工を施工することがしばしば起こる。

西九州自動車道の一環である久留米佐世保道路のⅠ区間とⅡ区間は、長崎県佐世保市大倉町から佐賀県武雄市東川町までの全長221kmの山岳道路で、266箇所に及びの裏面の切土工事であった。しかも、これらの切土工事箇所の21%にあたる57箇所において地すべりが発生した。これらの地すべりの大部分は岩盤の初すべりであり、事前に予知することは現在の技術水準では困難であった。しかしながら、施工途中における地すべり発生による被害を極力少なくするために、情報化施工を実施し、その観測によって地中にひずみが生じたことが判明した場合には、直ちに押え盛土を施工して、変状の進行を防止するとともに、変状の実態の調査を実施し、それらのデータの解析に基づいて、施工性および経済性を考慮して、対策工を決定した。

以上のように、各の裏面について細心の注意を払って情報化施工が実施されたために、各の裏面についての地形・地質の調査、変状発生時における施工条件などの詳細なデータが残されている。

斜面崩壊に数値化理論を用いた最近の研究としては、道路管理段階における崩壊事例を基にして、のり面や斜面の安定度の判定を行ったもの（中村、1986）、あるいは、切取り斜面を対象とし、落石型崩壊についての数値解析を行ったもの（上村、1990）などがある。

しかしながら、切土工事に伴って発生した地すべりの要因に関して、上記の地形・地質に関するデータを総合的整理することは、どのような地形・地質条件のある地域の道路計画における地すべりの予測、施工対策に役立つものと考え、数値化理論を用いた要因分析を行った。

これにより、その結果を報告する。

2 路線周辺の地形・地質の概要

西九州自動車道の一環である久留米佐世保道路のⅠ区間とⅡ区間は、長崎県佐世保市大倉町から佐賀県武雄市東川町までの全長221kmの山岳道路で、この路線沿いには、標高670.2mの尾岳および標高447.0mの尖六山の2つの狭い峰がありますが、この2峰以外の地盤は、おおむね標高200m以下の丘陵地形を呈している。谷の開口は下方侵食が進み、全体的に谷風が強くなっていている。路線は、この丘陵地の標高100〜170mのところを切土工を主体として通過することになっている。

この地域周辺の地質構造は図-1に示す通りである。これによると、当路線周辺には周状山地構造、有田ドーム、矢彦山構造などが存在し、これらの地質構造によって生じた堆積断層、無断層断層、断層断層が路線と交差している。また、これらのドームおよび盆状構造
Fig. 1 Geological structure along the Takeo-Sasebo Road

Fig. 2 Geological map along the Takeo-Sasebo Road
<table>
<thead>
<tr>
<th>項目</th>
<th>項目</th>
<th>項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 のり面の向き</td>
<td>12 緩斜面</td>
<td>23 貫入岩</td>
</tr>
<tr>
<td>2 のり面の形状</td>
<td>13 崩壊地</td>
<td>24 断層</td>
</tr>
<tr>
<td>3 路線の平面線形</td>
<td>14 崩壊地</td>
<td>25 植生状況</td>
</tr>
<tr>
<td>4 切土の形状</td>
<td>15 崩壊地</td>
<td>26 切土断面面積</td>
</tr>
<tr>
<td>5 切土の形状</td>
<td>16 崩壊地</td>
<td>27 切土のリ高</td>
</tr>
<tr>
<td>6 斜面の平面形</td>
<td>17 地すべり地帯</td>
<td>28 切土断面積/切土のリ高</td>
</tr>
<tr>
<td>7 斜面の断面形</td>
<td>18 非対称山地</td>
<td>29 平均の勾配</td>
</tr>
<tr>
<td>8 道急線</td>
<td>19 リニアメント</td>
<td>30 自然斜面勾配</td>
</tr>
<tr>
<td>9 土砂崩れ</td>
<td>20 土質</td>
<td>31 路線の方向と地層の走向</td>
</tr>
<tr>
<td>10 丘状地形</td>
<td>21 岩盤</td>
<td>32 背後斜面勾配</td>
</tr>
<tr>
<td>11 沢状地形</td>
<td>22 岩塊</td>
<td></td>
</tr>
</tbody>
</table>

から放射状に伸びる小断層が発達しており、複雑な地質構造となっている。

路線に沿って分布する地質は、新生代旧第三紀新世の杵築層群に分類される砂岩、頁岩および凝灰岩からなる（図-2参照）。杵築層群の岩相は変化に富んでいるが、頁岩断面の砂岩・頁岩の互層を主体としている。なお、武雄市側では局部的に片山岩、斑岩岩の貫入が認められる。さらに、この地域の地質の特徴の一つとして、層厚が数mmから10cm程度の凝灰岩の薄層を含むしていることがある。この薄い凝灰岩層は、地すべり形成が起こりやすいと考えられる。この地すべりを伴う凝灰岩は、幅広ながらも富むマイカ・テクトサイト混合層鉱物およびスケルトンを含む、地すべりのすべり面となることが多い。

3 切土工事に際して発生した地すべりの実態
3・1 切土箇所の地質・地質条件および道路構造条件と地すべり発生頻度について

この路線において、延長 22.1km の工事区間に 266 箇所の切土のり面があり、これららのうち、切土工事に際して地すべりが発生した箇所は、全体の 21% の 57 箇所にのぼった。

地すべりの発生頻度を検討するにあたって、切土箇所の地形・地質条件および道路構造条件として、表-1に示すように、32の項目を設定した。これらの項目のすべてについて、データが整っていた箇所は、地すべりが発生したのり面では52箇所で、地すべりが発生しなかったのり面では83箇所であった。

3・1・1 条件項目と地すべり発生の関係

(1) のり面の向き

のり面の向きに、北、東、南、南西、西、北西の 8 つに分け、地すべりの発生箇所、非発生箇所別にその頻度を示すと、図-3のようなになる。

この道路はおおよそ東西方向に通っているので、のり面の向きは、必然的に北向きおよび南向きのものが多く、北向きののり面は全体の 28% (38箇所)、南向きののり面は 34% (46箇所) で、両者が合わせると全体の 62% を占めている。

北向きののり面における地すべり発生の割合は 34%, 南向きののり面における割合は 39%となっている。なお、北西、北および東側を合わせて,'北方に向いたのり面'に対しほぼ、発生の割合は36%であり、一方、南東、南および南西を合わせた'南方に向いたのり面'の場合では38%となり、北向きののり面および南向きののり面における
発生割合とほとんど同じである。

①のり面の向きとその安定性については、日当たりの相違による植生の生育の差や、これに伴う地下水の変化などが考えられ、これらが地すべり発生の要因となっている場合には、北向きのり面の安定性と南向きのり面の安定性に相違が現れるはずである。しかしながら、上記のように、この道路においては、北向きのり面と南向きのり面における地すべり発生の割合はずっと同じである、このことは、地すべりの発生がり面の向きに関係がないことを意味している。

②のり面の形状

一般に、地山の地質が良好な場合には、急峻な尾根を形成していることから、このような地山を切石したときには、円形あるいは円錐形ののり面となる。これに対し、地山物質の風化が進んでいる場合や崖面が厚く分布しているような斜面においては、扁平な形状を呈するようになる。ここでは、図-4の右側に示すように、のり面の形状を円形、円錐形、複合形、扁平形、波形の5つに分けて、発生箇所、非発生箇所別にそれぞれの頻度を示すと、図-4の左側に示すようになる。この結果によれば、円錐形および波形に関しては、全体の割合が少ないので、これらを除き、円形、複合形および扁平形についての地すべり発生の割合を求めると、それぞれ31%、38%および50%となり、この地域においては、扁平形をしたのり面に地すべりが発生やすいことを示している。

③路線の平面線形

図-5 路線の平面線形に関する地すべりの発生頻度

Fig.4 Frequency of landslide occurrences in relation to profile of slope surfaces

Fig.5 Frequency of landside occurrences in relation to plane alignment
路線の平面線形は、図-5の右側に示すように、路線の曲線と切土のとり面との位置関係を表しているもので、凸、凹形および直線形に分けられる。図-5の左側に発生箇所、非発生箇所別にそれぞれの頻度を示す。これによると、凸形、凹形および直線形の全体の割合はほぼ等しく、それぞれ45箇所、43箇所および47箇所となっている。それぞれの形における地すべり発生の割合は、38％、23％および53％で、直線形の部分において多発していることになり、発生箇所の49％を占めている。これらに対して、凹形の部分では直線形の箇所の約半分となっており、発生しにくいことがある。

（4）切土の位置
切土の位置については、図-6の右側に示すような山腹形（のり面上部が山頂に達することなく、斜面の頂部を切土する場合）と山頂形（山頂まで切土する場合）とに分けることができ、これらの形について、発生箇所、非発生箇所別に頻度を求めると、図-6の左側に示すようになる。これによると、全体の箇所数としては、山腹形が60箇所、山頂形75箇所で、山腹形が少ないと考えを示し、山頂形の場合は60％を示し、山頂形の場合は21％となっている。また、発生箇所のうち、68％が山腹形であり、切土の位置が山腹形となる場合の方が発生しやすいことを示している。

（5）切土の形状
この切土形状という項目は、さきの切土の位置によって自ずと決まるものであるので、切土の位置と類似の項目である。ここでは、図-7の右側に示すように、Vカットとスライスカットに分けて、それぞれの頻度を求めた。この結果によると、図-7の左側に示すようになり、地すべり発生の割合は、Vカットの場合は35％、スライスカットの場合は46％となり、両者の間には顕著な差異は認められない。

（6）斜面の平面形
切土斜面の平面形は、図-8の右側に示すように、尾根形、直線形および複合形に分けて、発生箇所、非発生箇所別にそれぞれの頻度を求めた。この結果によると、図
図-8 斜面の平面形に関する地すべりの発生頻度
Fig.8 Frequency of landslide occurrences in relation to plane of slopes

図-9 斜面の断面形に関する地すべりの発生頻度
Fig.9 Frequency of landslide occurrences in relation to profile of section of slopes

一般的に、風化が進行した尾根では、ふだらかな地形となる。また、流れ斜面の自然斜面勾配は緩くなる。このような地形を呈する斜面で直線をとるとき、斜面の平面形は直線形となることが知られている。したがって、直線形の場合の割合が高くなっているものと思われる。

（7）斜面の断面形

斜面の断面形は、切土工の対象となる岩盤の風化状況を評価する一要因で、図-9の右側に示すように、岩盤が良好であれば、凹形を示し、風化の進行や地すべりに伴って直線形、凹形に変化することが考えられる。また、斜面の上部の岩盤は良好であるが、下部が脆弱になっていけるような場合を複合形として複数したが、これは、凹形の変形と考えられる。図-9の左側に、凸形、直線形、凹形および複合形に関する割合を発生箇所、非発生箇所別に示してある。この結果によれば、凸形、直線形、凹形および複合形における地すべり発生の割合は、それぞれ24%、43%、23%および66%となっている。したがって、斜面の断面形が凸形の場合は、地すべり起こしにくく、凹形または複合形の場合には、地すべりが発生しやすい傾向があることを示している。

（8）遷移線

遷移線とは、図-10の右側に示すように、尾根側から見て斜面勾配が大きくなるところで、侵食崩壊や地すべりの頭部を表していることが多い。遷移線の有無について、発生箇所、非発生箇所別にその頻度を示すと、図-10の左側のように、地すべり発生の割合は、遷移線がある場合は40％、ない場合は38％で、ほとんどその差はない。また、地すべりが発生した箇所における遷移線の有無の割合は、44%と56％で、有無を論じるほどの差は認められず、遷移線の有無が地すべり発生との間には関係がないことを示している。この結果沿いに見られる遷移線が段丘面の周辺部を表していることが多いためと考えられる。

（9）等高線の順
図-10 遅急線に関する地すべりの発生頻度
Fig. 10 Frequency of landslide occurrences in relation to knick lines

図-11の右側に示すような等高線の乱れは、地表の凹凸や地形の乱れを表す要因であり、地すべり地形を示すことが多い。一般的に、土工事に伴って発生する地すべりの大部分は、旧地すべり土壌の再移動であるといわれている。

図-11の左側に示すように、等高線の乱れのある箇所は全体で45箇所（48％）で、まったのない7箇所（52％）とほとんど同じ個数となっている。これに対して、地すべり発生箇所のうち、乱れのある箇所は22箇所、ない箇所は30箇所で、それぞれ全体の34％と43％となっている。一方、非発生箇所においては、等高線の乱れがある箇所は43箇所もあり、発生箇所の2倍となっている。したがって、乱れてあっても地すべりが発生しない場合の方多く、この等線における地すべりは、旧地すべり土壌の再移動ではなく、生すすべりと考えられ、等高線の乱れの有無と地すべり発生との関係は明確ではない。

丘状地形
過去に地すべりが発生した箇所には、地すべりによって生じた高まりが存在することがあり、また、断層が存在する箇所では、ケルンバットと呼ばれる丘状地形が見
されることがある（図-12参照）。したがって、このような丘状地形の存在は、過去における地すべりの発生あるいは断層の存在を示唆していることになる。

図-12の左側に示すように、丘状地形のある箇所は68箇所、ない箇所は67箇所である。これに対して、地すべり発生箇所のうち、丘状地形がある箇所は31箇所、ない箇所は21箇所で、それぞれ全体の46%と31%となっている。一方、非発生箇所において、丘状地形がある場合が37箇所あり、発生箇所の場合に比べて若干多くなっている。したがって、丘状地形の存在によって地すべりが発生しやすいとはいえないようである。ただし、発生箇所について見ると、丘状地形の存在する比率が59%であることは、たまたま、発生した箇所に丘状地形が多く見られたと解釈すべきであろう。

(i) 泽状地形

地すべり地の側部には、図-13の右側に示すような沢状地形が存在することが多い。したがって、地すべり地は評価する一つとして、沢状地形について検討することとした。

図-13の左側に示すように、沢状地形が見られる箇所は全体で86箇所（64%）あり、そのうちの28箇所において地すべりが発生しているが、その2倍に当る58箇所においては発生していない。また、発生箇所においては、沢状地形がある箇所の方が若干多い（53%）が、非発生箇所においては、沢状地形がある箇所が58箇所（70%）を占めている。したがって、当地域の沢状地形の存在と地すべり発生との直接的な関係は認められない。

当地域において、沢状地形が多く見られるのは、有田ドームの頂点部に代表されるような構造運動に伴って発生した断層が多く存在し、したがって、ここに分布する古第三紀砂岩層群は全体的に亀裂が多いことに起因しているためと思われる。

(ii) 緩斜面

地すべり地においては、図-14の右側に示すように、地すべり土壌によって形成された緩斜面が見られることが多い。これは、地すべり発生後において、地すべりを起した土壌の一部が急変し、平坦な地形を呈するためである。また、風化の著しい山地においても、土壌の移動によって緩斜面が形成されることがある。

図-14の左側に示すように、緩斜面のある箇所は72箇所、ない箇所は63箇所である。これらのうち、いずれの場合も26箇所において地すべりが発生しており、その発
生の割合は、それぞれ、36%と41%となり、ほとんど同じである。また、非発生箇所においては、傾斜面がある場合が46箇所、ない場合が37箇所となっている。したがって、傾斜面の存在と地すべり発生との関係はないと考えられる。

崩壊地

崩壊地の存在は、素因的に見て、自然斜面が不安定であることを示している。図-15に示すように、崩壊地がある箇所は23箇所で、そのうちの16箇所（70%）において地すべりが発生している。一方、崩壊地がない場合には、113箇所のうちの36箇所（32%）において地すべりが発生している。これは、崩壊地がない場合でも地すべりは発生するが、崩壊地があることによって、地すべり発生が加速されると考えることができる。

64 滑落崖

滑落崖は地すべりの活動によって生じる地形の状態である。滑落崖の存在は、地すべりの履歴を表す重要な要因となる。図-16に示すように、発生箇所には滑落崖は存在せず、14箇所の滑落崖はすべて発生箇所のみに見われている。これは、滑落崖の存在が地すべりの発生に影響しているように見えるが、発生箇所において、存在する箇所の割合は25%程度で、存在しない箇所がその3倍であることから、全体的に見て、地すべりの発生が滑落崖に依存する度合いはそれほど大きくないものと思われる。

図-15 崩壊地に関する地すべりの発生頻度

Fig. 15 Frequency of landslide occurrences in relation to slope failures

図-16 滑落崖に関する地すべりの発生頻度

Fig. 16 Frequency of landslide occurrences in relation to main scarp
地すべり地

地すべり地の存在は、斜面崩れの存在と同様に、地すべり活動の履歴を示す要因であるが、図-17に示すように、発生箇所のうちの2箇所に存在するのみで、検討対象とはならない。

沼・湿地

一般に、地すべり地には著しい凹凸があり、また、地水があることが多く、地下水位の高い場合には、凹地部に水が溜まりやすい。また、凹地や狭い谷地形を利用した人工的な池池がしばしば見られるが、図-18に示すように、発生箇所のうちの3箇所に湿地が見られた。したがって、地すべりの場合と同様に、検討対象とはならない。

地すべり地帯

この要素は、地すべり土壌の再移動に関するものである。図-19に示すように、地すべり地帯である箇所は8箇所で、すべての箇所で地すべりが発生しており、非発生箇所には、地すべり地帯は存在しない。一方、発生箇所において、地すべり地帯である割合は15％で、地すべり地帯以外の場合の5％の1程度となっている。

高速道路調査会（1985）によれば、地すべり活動の約52％は旧地すべり土壌の再移動であるとしているが、これと比べると、この道路地域における割合は極めて低い。
図-19 地すべり地帯に関する地すべりの発生頻度
Fig.19 Frequency of landslide occurrences in relation to landslide zones

ことになり、この地域における地すべり発生には、地すべり地帯以外の要因が大きく関与していることを示唆していることになる。

非対称山地
尾根を挟んだ両側の傾斜勾配が異なる山地は、一般に非対称山地と呼ばれている。この道路地域に分布する地質は、新生代古第三紀飛鳥層群に分類される堆積岩であり、受け皿側に対して流れ盤側の傾斜が緩く、非対称山地となっている箇所が多い。図-20に示すように、全体の66%に当る89箇所が非対称山地となっている。このうち、非対称山地における地すべり発生箇所数は46箇所で、発生の割合は52%である。これに対し、非対称山地でない場合には、発生の割合はわずか13%で、非対称山地の場合に比べて極めて小さくなっている。また、発生箇所において非対称山地の場合が占める割合は88%であることもから、非対称山地に地すべりが発生する確率が大きいことを示している。

リニアメント
リニアメントとは、一般的に、断層、地質が異なることによる硬軟の境界、岩脈軸などのような弱線を表すものである。当地域においては、断層によるリニアメントが多く見られる。

図-21に示すように、さきに述べた非対称山地の場合と同様な傾向を示しており、全体の47%に当る36箇所にリニアメントが認められ、このうち、40箇所において地すべりが発生し、その発生の割合は47%となっている。これに対し、リニアメントがなく箇所においては、発生の割合は24%程度で、リニアメントがある場合の半分程度となっている。また、発生箇所において、リニアメントがある場合の占める割合は77%であり、リニアメントのある箇所での地すべり発生頻度は非常に高いことが示されている。
アメントの存在は地すべり発生の一要因となっているように思われる。

(2) 地質

地質との関係を検討するに当たって、それぞれの主面の地質を砂岩（砂岩のみ）、砂岩＞頁岩（砂岩が多い）、砂岩＜頁岩（頁岩が多い）および頁岩（頁岩のみ）の5つに分類した。

図-22に示すように、砂岩のみの箇所は60箇所で、これより地すべり発生箇所は18箇所（30％）で、非発生箇所の42箇所（70％）に比べて半分以下となっている。同様に、頁岩のみの箇所では、砂岩のみの場合に比べて箇所数は17箇所と減少（3分の1以下）が、地すべり発生箇所は4箇所（24％）で、非発生箇所の13箇所（76％）にくらべると3分の1程度になっている。これに対して、砂岩と頁岩の互層となっている58箇所においては、発生箇所と非発生箇所の個数は30箇所と28箇所で、ほとんど同じと見られる。これは、単層の場合よりも互層の場合の方が地すべりの発生しやすいことを示している。この場合、砂岩に比べて、強度が小さい頁岩が地すべり面になることによると考えられる。

(3) 減灰岩

地層に分布する第三紀層中には、減灰岩の薄層が挟在する。X線分析の結果によると、この減灰岩は膨張性を有するスケレタイトを含んでいることから、この薄層が地すべり面になる可能性が高いと考えられる。

図-23に示すように、減灰岩の薄層が挟在する38箇所のうち、31箇所において地すべりが発生している。これに対して、減灰岩の薄層が挟在しない場合の発生の割合は30％程度であり、減灰岩の薄層の存在が地すべりの発生に関与していると推定される。

(4) 崖盤

崖盤は、上部斜面から供給された岩屑が斜面の範囲や谷などに堆積したもので、その体自体は安定した斜面を形成していることが多い。

図-24に示すように、崖盤が存在する箇所は全体で15箇所で、そのうちの10箇所で地すべりが発生している。しかしながら、これらの箇所において地すべりが崖盤部の滑動だけであることから、崖盤の存在と地すべりの発生との関係はないと考えられる。
凝灰岩

図23 凝灰岩に関する地すべりの発生頻度
Fig.23 Frequency of landslide occurrences in relation to tuffs

断層

一般に、初生すべりの原因として、断層の存在が指摘されているので、断層が表層に存在する場合、断層が表層に近接して存在する場合、断層がない場合に分け、発生箇所および非発生箇所の頻度を示すと、図25のようにある。この結果によると、発生の割合は、存在する場合は17％、近接して存在する場合は45％、存在しない場合は40％となっている。ここに、断層が存在する場合（近接して存在する場合を含む）でも、地すべりが発生しない場合の割合は70％となっており、断層の存在と地すべり発生との関係は明確ではない。

崖 DESK

図24 崖 DESKに関する地すべりの発生頻度
Fig.24 Frequency of landslide occurrences in relation to talus deposits

場合（近接して存在する場合を含む）でも、地すべりが発生しない場合の割合は70％となっており、断層の存在と地すべり発生との関係は明確ではない。

植生状況

植生の相違は、崖崖中の中地形状況の状態や地形の風化状況などを表していることが多い。したがって、これらの地形条件が地すべり発生に関係していると思われ、植生と地すべりとの関係があることもよくあることになる。しかしながら、図27に示す結果によれば、崖壁の箇所は55箇所で全体の41％、細粒物の箇所は58箇所で43％であるが、他の箇所箇所はその数が少ないので、一括して扱うことにすると、その他の箇所として22箇所で16％とな
図-25 斬入岩に関する地すべりの発生頻度
Fig.25 Frequency of landslide occurrences in relation to intrusive rocks

の。それぞれの発生箇所における発生の割合は、広葉樹箇所が42％、針葉樹箇所が33％、その他の箇所が45％（枝：75％、みかん：63％、砕：25％、苔：17％）となり、植生と地すべり発生との関係はないようである。

図-26 斬入岩に関する地すべりの発生頻度
Fig.26 Frequency of landslide occurrences in relation to faults

～600m²が29箇所（21％）、601m²以上が18箇所（13％）で、大部分は600m²以下である。

この結果に基づいて、断面積区別に地すべり発生の割合を見ると、200m²以下のは44％、201～400m²の場合は37％、400～600m²の場合は28％となっている。さらに、600m²以上の場合は44％となる。したがって、大局的には、面積の大小と地すべり発生との間には関係はないもののと思われる。

切土のり高

切土のり高としては、切土のり高の直高を使用した。図-29に示すように、切土のり高を10m間隔に区分し、のり高区別に地すべり発生の割合を見ると、10m以下の場合は39％、11～20mの場合は39％、21～30mの場合は31％、41m以上の場合は44％となっている。これに対して、31～40mの場合は70％となり、他の間隔の場合
図27 植生状況における地すべりの発生頻度
Fig.27 Frequency of landslide occurrences in relation to vegetation conditions

図28 切土断面積における地すべりの発生頻度
Fig.28 Frequency of landslide occurrences in relation to sectional area of cutting

に比べて、大きい値を示している。したがって、大局的には、切土のり高と地すべり発生との間には明瞭な関係はないものと考えられる。

図29 切土のり高における地すべりの発生頻度
Fig.29 Frequency of landslide occurrences in relation to the height of cuttings

図29 切土のり高における地すべりの発生頻度
Fig.29 Frequency of landslide occurrences in relation to the height of cuttings

近に述べた切土断面積および切土のり高のそれぞれについては、地すべり発生との間に明瞭な関係を見ることとはできなかったが、ここでは、切土のり高に対する切土断面積の比と地すべり発生との関係を検討する。

図29-30に示すように、断面積のり高の値を10m間隔に区分し、区別に地すべりの発生の割合を見ると、10m以下の場合44％、11～20mの場合48％、21～30mの場合は25％、31～40mの場合は36％となる。なお、断面積のり高の値が20mを境にして発生の割合を見ると、20m以下の場合は48％であるのに対して、20m以上の場合は25％となり、20m以下の場合は約半分になっている。

この切土断面積/切土のり高の値は、切土の形状がスライカットとなるか否かを評価するもので、切土断面積が同じであってもスライカットとならばその値は小さくなる。したがって、図29-30に示すように、20m以下の場合は地すべりが多く発生していること、スライカットの方が発生の割合が大きいことを示すことになる。

さらに、切土の形状の項で述べたように、地すべり発生の割合が、スライカットの場合46％、Vカットの場合35％であったことと同傾向を示している。
図-30 切土断面積/切土のり高に関するすべりの発生頻度
Fig. 30 Frequency of landslide occurrences in relation to ratios of sectional area of cutting and the height of cutting

図-31 平均のり勾配
Fig. 31 Frequency of landslide occurrences in relation to average inclination of slopes

(図) 平均のり勾配
一般的には、のり勾配が急であるほどすべりが発生しやすいと考えられている。
図-31に示すように、平均のり勾配を1:1.5以下,
1:1.6〜1.2, 1:1.3〜1.0および1:0.9以上に4区
3分し、区別に地すべり発生の割合を求めると、1:1.5
以下の場合は27%, 1:1.6〜1.2の場合は50%, 1:1.3
〜1.0の場合は26%, 1:0.9以上の場合は75%となって
いる。この結果によると、勾配が1:0.9以上の場合
には、すべり発生の可能性が大きいことをうかがうこと
できるが、勾配が1:1.0以下の場合は、勾配の大きさと地すべり発生との関係は明確でない。

(図) 自然斜面勾配
自然斜面勾配としては、道路センターからのり肩ま
どの勾配を採用した。図-32の右側に示すように、道路の
両側（A側とB側）において切土工事が行われるとき、
A側の勾配θAを正とし、B側の勾配θBを正角として表
した。
図-32の左側に示すように、地すべり発生の割合は、
勾配が−10〜10°の場合は33%, 11〜30°の場合は47%,
31°以上の場合は48%を示しており、勾配が水平に近い
場合（−10〜10°）に比べて勾配が大きくなると、発生
の割合が大きくなるようであるが、勾配が10°以上の場
合にはあまり関係がないようである。これに対して、勾
配が−30°以下の場合は13%となり、正記号の場合に比
図-32 自然斜面勾配に関するすべりの発生頻度
Fig. 32 Frequency of landslide occurrences in relation to natural slope gradation

図-33 路線の方向と地層の走向とのなす角に関するすべりの発生頻度
Fig. 33 Frequency of landslide occurrences in relation to angle of direction of the route and strike of layers

すべりを大きくしている。これは前記で示した箇所の斜面が受圧盤であることにによるものと考えられる。

図-34 背後斜面勾配に関するすべりの発生頻度
Fig. 34 Frequency of landslide occurrences in relation to slope gradation of the backside

路線の方向と地層の走向とのなす角が大きいほど、切土の面における地層の見掛けの傾斜が緩やかになる傾向が現れる。したがって、路線の方向と地層の走向とのなす角度が大きいほど、すべりは発生しにくいことになると考えられる。

図-35に示すように、角度区別に地すべり発生の割合を見ると、20°以下の場合は50%、21°～40°の場合は34%
61°～80°の場合は42%、81°以上の場合は38%となっている。これらに対して、41°～60°の場合は16%と小さく、地すべり発生は、路線方向と地層の走向とのなす角に依存するようでも、地すべりの発生状況に影響があると考えられる。

図-36を参考にすると、背後斜面勾配が大きい場合、すべりの発生が見られる。勾配が緩い0°～10°の場合には、17箇所の27%に当る3箇所において地すべりが発生しているものであるが、-11°～20°の場合は、21°～30°の場合は、地すべり発生の割合はそれぞれ37%および33%となっている。一方、勾配が40°以上の場合は、地すべり発生の割合は、0°～10°の場合は46%、11°～20°の場合は44%、21°～30°の場合は58%、31°～40°の場合は50%となっている。これらのことから、背後斜面勾配が地すべり発生には、それほど大きく関与しないものと考えられる。

3.1.2 要約
さらに設定した32の項目のうち、のり面の形状、路線
の平面線形、切士の位置、斜面の平面形、傾斜面の断面形、崩壊地、非対称山地、地質、凝灰岩、切士断面積／切士の三角、自然斜面勾配の11項目は、地すべり発生との関係が比較的大きいと考えられるものである。

また、遷急瀬、丘状地形、滑落崖、リニアメント、崖経、貫入岩、断層、平均の傾斜勾配、路線の方向と地層の走向とのなす角、背後斜面勾配の10項目は、やや関係があると考えられるものである。

これらの項目に対して、の며の面の向き、切士の形状、等高線の乱れ、溝状地形、緩斜面、隕没地、沼・湿地、地すべり地帯、粗が生状況、切士断面積、切士の高さ11項目については、地すべり発生との関係は認められないという結果が得られた。

3・2 地すべりの形態について

当該道路建設における切士工事に際して発生した地すべりを、その発生形態に従って分類すると、表-2に示すように、タイプ①およびタイプ③は、規模が比較的小さい崩壊型の地すべりで、それぞれ亀裂型およびトッピング型に対応する。タイプ①とタイプ③およびタイプ⑩は、いわゆる地すべりで、それぞれ、風化した凝灰岩をすべり面とするもの（風化崩壊型）、風化した凝灰岩をすべり面とするもの（風化崩壊型）および風化した凝灰岩をすべり面とするもの（風化崩壊型Ⅱ）である。

表-2に示すように、風化した凝灰岩をすべり面とするタイプ②が16箇所で最も多く、ついて、タイプ③が13箇所、タイプ①が12箇所、タイプ②およびタイプ④がそれぞれ8箇所となっている。したがって、対象すべきの規模の小さい崩壊型のすべりが2箇所であるのに対して、規模が大きく、すべり面が明確で、平面すべきの形態を呈する地すべり型のすべリは全体の63%に相当36箇所となっている。

それぞれのタイプについて、すべき面勾配別の頻度を示すと、図-35に示すようになる。この図によると、タイプ①のすべき面勾配が21°以上であるのに対して、層理面をすべき面とするタイプ③およびタイプ⑩においては30°以下であり、さらに、当路線の特徴的なすべきである風化した凝灰岩の海層をすべき面とするタイプ②において、16箇所のすべてが20°以下で、そのうち10箇所は10°以下である。

つきに、路線の方向と地層の走向とのなす角と地層の傾斜角との関係をタイプ別に示すと、図-36に示すようになる。ここに、路線の方向と地層の走向とのなす角を求めるに当たって、57箇所のうち25箇所については地層の走向が不明確であったので、データが明示されている32箇所についての結果である。この図によると、タイプ①およびタイプ③の崩壊型の場合、データが少ないとはいえはあるが、路線の方向と地層の走向とのなす角が40°よ
<table>
<thead>
<tr>
<th>地すべりの型</th>
<th>崩壊状況（崩壊の起因と崩壊の機構）</th>
<th>崩壊のリーフ面の地質</th>
<th>模式断面図</th>
<th>窪所数</th>
<th>発生比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>崩壊</td>
<td>亀裂型（タイプ①）</td>
<td>切土工に起因する荷重除去、摂動作業の影響ある</td>
<td>崩壊は、亀裂（層理、節理）や小断層がよく発達した砂岩、頁岩の風化岩盤、強風化岩盤内で発生する。</td>
<td>龟裂が発する岩盤</td>
<td>13</td>
</tr>
<tr>
<td>トップリング型（タイプ②）</td>
<td>切土工に起因する荷重除去、摂動作業の影響ある</td>
<td>砂岩、頁岩の風化岩盤で発生する。</td>
<td>砂岩、頁岩の風化岩盤で発生する。</td>
<td>ブロック状</td>
<td>8</td>
</tr>
<tr>
<td>風化境界型（タイプ③）</td>
<td>切土工に起因して強風化岩盤、風化岩盤、新鮮岩盤の境界をすべり面として発生するもので、のり面の比較的深い部分から滑落する。</td>
<td>砂岩、頁岩の強風化岩盤、風化岩盤、新鮮岩盤の境界をすべり面として発生している。</td>
<td>風化境界</td>
<td>12</td>
<td>21%</td>
</tr>
<tr>
<td>崩壊</td>
<td>層面面II（風化頁岩）（タイプ④）</td>
<td>崩壊の主原因は切土工に伴う応力解放と荷重除去であるが、頁岩が著しく風化している場所で発生する。</td>
<td>阿見岩のみが差別風化を受けて粘土化している。</td>
<td>風化頁岩層</td>
<td>8</td>
</tr>
<tr>
<td>崩壊</td>
<td>層面面II（風化頁岩）（タイプ⑤）</td>
<td>当該地域における特徴的な地すべりで、その形態はタイプ④と同様であるが、砂岩、頁岩に挟在される風化凝灰岩（厚厚数mm～20cm）が、応力解放による吸水・膨張に起因して強度低下を起こし、これをすべり面として滑動する。すべり面の勾配は5～20°で、崩壊規模は大きい。</td>
<td>砂岩、頁岩中に風化凝灰岩を挟在する。</td>
<td>風化凝灰岩層</td>
<td>16</td>
</tr>
</tbody>
</table>
り小さいとき、他のタイプに比べて地層の傾斜角が大きい場合にはすべりが発生している。これに対して、風化凝灰岩の層をすべり面とするタイプ①の場合は、地層の傾斜角が小さい場合でも発生しており、また、路線の方向と地層の走向とのなす角が60°以上の場合でも発生している。

3・3 すべり面のせん断強度について

すべり面勾配とせん断抵抗角との関係を示すと、図—37に示すようになる。ここに、せん断抵抗角は、すべり土壌の平均的な垂直圧力から見掛けの粘着力を仮定して、簡便法による安定解析（逆算法）の結果を用いて求めたものである。したがって、この図には、安定解析を実施したすべてのケースについてプロットしてある。なお、タイプ①およびタイプ②については、2次すべりあるいは3次すべりが発生した場合の解析結果もプロットし、図—37に示すように、すべり面勾配が大きくなるにしたがって、せん断抵抗角は大きくなり、しかし、そのバラツキの範囲は狭くなっている。これに対して、当道路に関する結果は、バラツキ範囲は全体的に大きいが、高速道路調査会の結果と同様に、すべり面勾配が大きくなるにつれて、せん断抵抗角も大きくなる傾向にある。しかしながら、タイプ③のせん断抵抗角の大部分の値は、高速道路調査会の結果よりも小さくなっている。また、タイプ③についても、すべり面勾配が30°以上になると、同様に小さい値を示している。

つきに、地すべりの発生を現場における大型のせん断試験とみなし、

\[F_S = \frac{\sum c'i + \sum (W \cos \alpha - u) \cdot \tan \phi'}{\sum W \sin \alpha} \]

である安定解析式（簡便式）を書き直すと、

図—38 平均有効垂直応力と平均せん断応力との関係

Fig. 38 Relation between mean effective normal stress and mean shear resistance stress
$$\frac{F_s \cdot \sum W \sin \alpha}{\Sigma l} = c' + \frac{\sum (W \cos \alpha - ul) \cdot \tan \phi'}{\Sigma l} \tag{2}$$

となる。これをクーロンの破壊基準

$$\tau = c' + \sigma_n' \tan \phi' \tag{3}$$

に比較対応すると、平均せん断応力 τ および平均有効垂直応力 σ_n' は、つぎのように表すことができる。

$$\tau = \frac{F_s \cdot \sum W \sin \alpha}{\Sigma l} \tag{4}$$

$$\sigma_n' = \frac{\sum (W \cos \alpha - ul)}{\Sigma l} \tag{5}$$

ここに、式(4)を用いて平均せん断応力 τ を求めると当面は、すべり発生時の安全率を $F_s = 1.0$ とした。

式(4)および式(5)によって計算された平均せん断応力 τ と平均有効垂直応力 σ_n' との関係は、図-38cに示すようになる。図示するに当たって、図示するに当たって、地域における特徴的な地すべりであるタイプ①を白丸で、その他のものを黒丸で示し区別した。

この結果によってと、全体的には多少のバラツキはあるものの、有効垂直応力 σ_n' の増加に伴って、平均せん断応力 τ は直線的に増加することが判明した。なお、図中には、高速道路事故調査会（1985）による古第三紀層に関する関係を実線および破線で示している。この高速道路事故調査会の結果と、この範囲に分布する堆積層群における結果を比較すると、タイプ①、タイプ③、タイプ④、タイプ⑤については、1つを除いて高速道路事故調査会の範囲に含まれている。

しかしながら、気化げれ岩をすべり面とするタイプ③については、そのほとんどが高速道路事故調査会の下限値を下回しており、タイプ⑨の平均有効垂直応力 σ_n' と平均せん断応力 τ との関係はつぎのようにになる。

$$\tau = 0.238 \sigma_n' + 0.255 \quad (r = 0.916) \tag{6}$$

以上のよう、タイプ①、タイプ②、タイプ④、タイプ⑤については、高速道路事故調査会（1985）の示す結果と同じ傾向を示しているが、タイプ⑨の場合は、既存のデータに比較して、平均せん断応力 τ の値が低くなることは明らかである。したがって、古第三紀層の分布地域であっても、気化げれ岩を挟む箇所については、土工事によわゆる応力の相違によって、すべりの発生をうながすことが考えられる。

4 要因分析

4・1 分析方法

斜面の安定度を評価する方法としては、一般に、過去の災害記録の調査、空中写真の判読、ポーリングによる調査などによって、すべり発生、すべり地帯、地質状況などを抽出し、これらのデータに対して経験的判断を下す方法が用いられている。また、斜面安定の理論式から安定率を求める方法が用いられている。ただし、これらの方法は定性的判断に基づくものが多く、解析に当たって個人差が生じやすい。これらの調査方法の着点点、判断基準点は、日本道路協会（1986）の「道路土工事の面工・斜面安定検査」に詳細に述べられている。

このようなことから、すべりの要因分析において用いられる定数的方法としては、多変数解析法がある。これらの方策を要約するとつぎのようにになる。

1) 実験法——過去のすべり発生、空中写真判読および地形・植生などの特性や地形との関連に基づいて、安定性を定性的に判断する方法。

2) 点数法——崩壊に関与すると考えられる種々の要因をいくつかの等級に分け、それらの等級にあらかじめ危険度に応じた点数を与えておき、それらの合計点数の大小によって、対象としている斜面の危険度を予測する方法。

3) 力学的安定解析法——ある時点でにおける対象斜面の力学的安定性を決定するために、基盤的要因を数値的に予測仮定し、それらの数値を用いて斜面安定理論式から安定率を算出し、その結果に基づいて、変動の予測を行果方法。

4) 多変数解析法——大量の崩壊発生例と、それらと対比可能な非発生例について、両者の差異をもたらしと考えられる要因のデータから、各要因の特性値の相関を発生率の累積相関を統計的に解析し、その結果に基づいてその他の予測を用いる方法である。さらに、その結果を簡易化して点数法に利用することもある。

4・2 多変数解析

多変数解析法とは、統計的な解析手法であり、多くのデータ（母集団）が必要である。当線においては、古第三紀の堆積岩という土の地質条件において、266箇所の切土工事箇所のうち、57箇所においてすべりが発生し、そのうちの52箇所については、種々の項目から詳細なデータを残されている。これらのデータに対比できる非発生箇所のデータも数多く（83箇所）あることから、多変数解析を実施した。
この解析においては、地質の傾斜角などの量的要因のみならず、岩質の風化状況、斜面の幅などの質的要因に基づいて、地すべり発生の有無のような質的な外的基準を予測あるいは判別することになるので、数理化理論の数理化Ⅱ類を使用した。

また、解析は、解析の対象とする時点によって抽出可能な要因が異なることから、
1) 予備設計段階
2) 細部設計段階
3) 詳細設計段階

の3つの段階について実施するとともに、規模の大きい地すべり型と比較的規模の小さい崩壊型を区別する要因についても検討した。

分析の手順は、つきのとおりである。
1) はじめに、抽出したアイテムとカテゴリを用いて数理化Ⅱ類による計算を行い、外的基準（地すべりの発生と非発生）に大きく寄与する相関係数を求めめる。
2) つぎに、相関係数が低いアイテムから順にそのアイテムを除き外的計算を繰返し、判別中率および相関比を求め、この両者の値から、効率的で妥当であると判断されるアイテムの個数を求め、これらアイテムについて詳細な計算を行う。
3) 上記の計算から得られたカテゴリのスコアを用いて、各サンプルごとのサンプルスコアを求め、これに基づいて頻度分布図（スペクトラム）を作成し、地すべり発生の可能性を判断する基準を決定する。

4・3 数理化Ⅱ類による分析結果

4・3・1 予備設計段階における分析結果

予備設計段階においては、国土基本図1:5,000、地質平面図1:50,000および地質利用基本図1:50,000を用いて、表3に示すアイテムおよびカテゴリを抽出し、数理化Ⅱ類による分析を行った。

求められた判別中率および相関比とアイテムの個数との関係は、図39に示すようになる。判別中率はアイテムの個数が5個のときに最小となっているが、全体的にはバラツキがある。これに対して、相関比の方は、アイテムの個数が2個から4個になると、0.54から0.60へと急激に大きくなり、アイテムの個数が4個より大きくても相関比はそれほど大きくならない。

予備設計段階においては、おおよその傾向が判ればよ

<table>
<thead>
<tr>
<th>アイテム</th>
<th>カテゴリー</th>
<th>偏相関係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>路線の平面線形</td>
<td>0.3457</td>
</tr>
<tr>
<td>2</td>
<td>斜面の断面形状</td>
<td>0.2472</td>
</tr>
<tr>
<td>3</td>
<td>切土の位置</td>
<td>0.2235</td>
</tr>
<tr>
<td>4</td>
<td>塩類線</td>
<td>0.2200</td>
</tr>
<tr>
<td>5</td>
<td>サドミン</td>
<td>0.1129</td>
</tr>
<tr>
<td>6</td>
<td>非対称山地</td>
<td>0.1111</td>
</tr>
<tr>
<td>7</td>
<td>斜面の表面形</td>
<td>0.0953</td>
</tr>
<tr>
<td>8</td>
<td>水面の形状</td>
<td>0.0801</td>
</tr>
<tr>
<td>9</td>
<td>等高線に乱れ</td>
<td>0.0215</td>
</tr>
<tr>
<td>10</td>
<td>切土の形状</td>
<td>0.0201</td>
</tr>
</tbody>
</table>
表-4 予備設計段階のアイテムのスコアおよびレンジ
Table 4 Item scores and ranges at the preliminary design stage

<table>
<thead>
<tr>
<th>アイテム</th>
<th>カテゴリー</th>
<th>度数</th>
<th>スコア</th>
<th>レンジ</th>
</tr>
</thead>
<tbody>
<tr>
<td>路線の平面線形</td>
<td>凸形</td>
<td>49</td>
<td>0.0683</td>
<td>0.3732</td>
</tr>
<tr>
<td></td>
<td>凹形</td>
<td>44</td>
<td>-0.2212</td>
<td></td>
</tr>
<tr>
<td></td>
<td>直線形</td>
<td>42</td>
<td>0.1520</td>
<td></td>
</tr>
<tr>
<td>遅延線</td>
<td>あり</td>
<td>34</td>
<td>0.2373</td>
<td>0.3172</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>101</td>
<td>-0.0799</td>
<td></td>
</tr>
<tr>
<td>斜面の断面形</td>
<td>凸形</td>
<td>65</td>
<td>-0.0921</td>
<td>0.2962</td>
</tr>
<tr>
<td></td>
<td>直線形</td>
<td>47</td>
<td>0.0438</td>
<td></td>
</tr>
<tr>
<td></td>
<td>凹形</td>
<td>7</td>
<td>0.0946</td>
<td></td>
</tr>
<tr>
<td></td>
<td>複合形</td>
<td>16</td>
<td>0.2041</td>
<td></td>
</tr>
<tr>
<td>切土の位置</td>
<td>山腹</td>
<td>59</td>
<td>0.1428</td>
<td>0.2537</td>
</tr>
<tr>
<td></td>
<td>山頂</td>
<td>76</td>
<td>-0.1109</td>
<td></td>
</tr>
</tbody>
</table>

表-5 予備設計段階のサンプルスコアの級とその箇所数および比率
Table 5 Grade of sample scores, the number of sites of each grade and ratio at the preliminary design stage

<table>
<thead>
<tr>
<th>級</th>
<th>箇所数</th>
<th>箇所数比率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>全体</td>
<td>発生箇所</td>
</tr>
<tr>
<td>-0.5040 ～ -0.3961</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>-0.3962 ～ -0.2283</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>-0.2284 ～ -0.0905</td>
<td>37</td>
<td>8</td>
</tr>
<tr>
<td>-0.0906 ～ 0.0471</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>0.0472 ～ 0.1849</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>0.1850 ～ 0.3227</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>0.3228 ～ 0.4605</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>0.4606 ～ 0.5963</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>0.5984 ～ 0.7361</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.7362 ～ 0.8739</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>合計</td>
<td>135</td>
<td>52</td>
</tr>
</tbody>
</table>

く、なお、アイテムの個数を4個とした場合の判別的確率および相関比は、それぞれの最大値に対して97%であるので、個個別個の大きい4つのアイテム、すなわち、①路線の平面線形、②切土の位置、③斜面の断面形、④遅延線（表-3参照）を用いて分析を行った。この場合に得られた各カテゴリのスコアおよびアイテムのレンジは、表-4に示すようになる。これによれば、路線の平面線形のレンジが最も高く、そのスコアをみると凸形および直線形の方が大きい。したがって、「路線の平面線形」の凸形および直線形の場合は地すべりの発生に大きく寄与していることがわかる。これは、切土後に地山の応力が分散するようになる箇所が危険であり、アーチアシメーションのような応力状態が考えられる凹形の場合が安全となると解釈される。さらに、'切土の位置'では山腹の場合、'斜面の断面形'では複合形の場合および'遅延線'では存在する場合が、地すべり発生に寄与することがわかる。

表-4に示した各カテゴリのスコアを用いて求めたサンプルスコア（最大：0.8739、最小：-0.5040）を10個の級に分け、それぞれの級における発生箇所数と非発生箇所数およびそれらの比率を示すと表-5のようになる。また、これをヒストグラムで表すと図-40のように
表－6 予備設計段階の崩壊予測区分
Table 6 Classification of slope failure prediction at the preliminary design stage

<table>
<thead>
<tr>
<th>地すべり発生の可能性</th>
<th>サンプルスコア</th>
</tr>
</thead>
<tbody>
<tr>
<td>大</td>
<td>0.1850以上</td>
</tr>
<tr>
<td>中</td>
<td>0.0472～0.1849</td>
</tr>
<tr>
<td>小</td>
<td>0.0471以下</td>
</tr>
</tbody>
</table>

なる。これによると、サンプルスコアの値が0.1850以上
の場合は、非発生箇所が3箇所であるのに対して、発生
箇所は32箇所となり、この範囲における発生の割合は91
％となる。また、サンプルスコアが0.0472から0.1849の
間では、21箇所のうち9箇所で地すべりが発生し、12箇
所は非発生箇所となっており、発生の割合は43％とな
る。一方、サンプルスコアが0.471以下の場合には、79箇所
のうち発生箇所は11箇所で、発生の割合は14％となって
いる。したがって、地すべり発生の可能性を、これらの
サンプルスコアを用いて、大、中、小の3段階に区分す
ると、表－6に示すようになる。

4・3・2 概略設計段階における分析結果
概略設計段階においては、第一次地質調査（地質地質
踏査および概略ボーリング調査）の結果および実御平面
図を用いて、表－7に示す20個のアイテムおよびそれら
のアイテムに属するカテゴリーに関するデータを抽出し
て分析を行った。この場合、データを抽出した箇所は、
発生箇所については47箇所、非発生箇所については80箇
所で、全体で127箇所であった。
<table>
<thead>
<tr>
<th>アイテム</th>
<th>カテゴリー</th>
<th>偏相関係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>地層の傾斜</td>
<td>流れ盤、受け皿、水平</td>
</tr>
<tr>
<td>2</td>
<td>路線の平面形状</td>
<td>凸形、凹形、直線形</td>
</tr>
<tr>
<td>3</td>
<td>自然斜面勾配</td>
<td>-10° 〜 -11°、-10° 〜 19°、10° 〜 29°、30° 以上</td>
</tr>
<tr>
<td>4</td>
<td>切土の位置</td>
<td>山腹、山頂</td>
</tr>
<tr>
<td>5</td>
<td>平均の傾斜</td>
<td>1:1.5以下、1:1.4〜1:1.2、1:1.1〜1:1.0、1:0.9以上</td>
</tr>
<tr>
<td>6</td>
<td>リニアメント</td>
<td>あり、なし</td>
</tr>
<tr>
<td>7</td>
<td>適急線</td>
<td>あり、なし</td>
</tr>
<tr>
<td>8</td>
<td>切土の傾斜/切土の位置</td>
<td>0°〜9m、10〜19m、20〜29m、30〜39m、40m以上</td>
</tr>
<tr>
<td>9</td>
<td>路線の方向と地層</td>
<td>0°〜18°、20°〜33°、40°〜58°、60°〜79°、80°以上</td>
</tr>
<tr>
<td>10</td>
<td>非対称山地</td>
<td>あり、なし</td>
</tr>
<tr>
<td>11</td>
<td>背後斜面勾配</td>
<td>(-90°〜 -51°、-50°〜 -31°、-30°〜 -11°、</td>
</tr>
<tr>
<td>12</td>
<td>丘状地形</td>
<td>-10°〜 9°、10°以上</td>
</tr>
<tr>
<td>13</td>
<td>斜面の断面形状</td>
<td>凸形、凹形、四形、複合形</td>
</tr>
<tr>
<td>14</td>
<td>地すべり帯</td>
<td>あり、なし</td>
</tr>
<tr>
<td>15</td>
<td>斜面の平面形状</td>
<td>尾根形、直線形、複合形</td>
</tr>
<tr>
<td>16</td>
<td>のり面の形状</td>
<td>円形+円錐形、複合形、扇平形</td>
</tr>
<tr>
<td>17</td>
<td>等高線の乱れ</td>
<td>あり、なし</td>
</tr>
<tr>
<td>18</td>
<td>沢状地形</td>
<td>あり、なし</td>
</tr>
<tr>
<td>19</td>
<td>切土の形状</td>
<td>Ⅴカット、スライスカット</td>
</tr>
<tr>
<td>20</td>
<td>地質</td>
<td>単層、互層</td>
</tr>
</tbody>
</table>

これらの結果から求められた判別中率および相関比とアイテムの個数の関係を図-41に示す。これによると、判別中率におけるアイテムの個数を9個から13個の間では若干のバラツキはあるが、平均的には90%であるのでに対して、アイテムの個数が6個の場合は85%が低い値を示している。また、アイテムの個数が14個と15個の場合は、アイテムの個数は9〜13個の場合よりも小さい値を示している。一方、相関比については、アイテムの個数が7個から12個の間においては、1個あたり0.0084が割合で増加しているが、12個から15個の間では1個あたり0.0060の増加がみられている。したがって、相関比を示すとき、アイテムの個数が12個以下でない方がよいと考えられる。また、アイテムの個数が12個のときの判別中率は90.7%で、最大値（アイテムの個数が10個のとき：90.9%）とはほとんど変わらないことから、偏相関係数の大きい12個のアイテム（表-7参照）を用いて分析を行った。得られた各アイテムのカテゴリーのスコアおよびアイテムのレンジは、表-8に示す通りである。

これにより、「地層の傾斜」のレンジが最も大きくなら、カテゴリーとしては流れ盤が地すべりに寄与していることがわかる。「自然斜面勾配」では、上方に向かって勾配が急なほど地すべりが発生しやすいという結果が得られている。「平均の傾斜」では、1:0.9以上および1:1.4〜1:1.2の2つのカテゴリーが地すべりに寄与するという結果となっている。前者は凹状傾斜やトッピング型の地すべりの発生を示しており、後者は平面すべりにおいては、のり面が緩やくてもする可能性があることを示している。すなわち、平面すべりにおいては、すべりの先端部の土塊が抵抗力として作用するため、平面すべりの対策工として排土工を採用するに当たって、のり面を緩やくすることが必ずしも有効でないことになる。
<table>
<thead>
<tr>
<th>アイテム</th>
<th>カテゴリー</th>
<th>度数</th>
<th>スコア</th>
<th>レンジ</th>
</tr>
</thead>
<tbody>
<tr>
<td>地層の傾斜</td>
<td>流れ盤</td>
<td>75</td>
<td>0.1793</td>
<td></td>
</tr>
<tr>
<td></td>
<td>受け盤</td>
<td>50</td>
<td>-0.2632</td>
<td>0.4425</td>
</tr>
<tr>
<td></td>
<td>水平</td>
<td>2</td>
<td>-0.1450</td>
<td></td>
</tr>
<tr>
<td>自然斜面勾配</td>
<td>-40°～-11°</td>
<td>15</td>
<td>-0.2896</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-10°～9°</td>
<td>45</td>
<td>-0.0145</td>
<td>0.4322</td>
</tr>
<tr>
<td></td>
<td>10°～29°</td>
<td>58</td>
<td>0.0640</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30°以上</td>
<td>9</td>
<td>0.1426</td>
<td></td>
</tr>
<tr>
<td>平均のり勾配</td>
<td>1:1.5以下</td>
<td>11</td>
<td>-0.1802</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:1.4～1:1.2</td>
<td>45</td>
<td>0.0390</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:1.1～1:1.0</td>
<td>63</td>
<td>-0.0233</td>
<td>0.3870</td>
</tr>
<tr>
<td></td>
<td>1:0.9以上</td>
<td>8</td>
<td>0.2068</td>
<td></td>
</tr>
<tr>
<td>路線の平面線形</td>
<td>凸形</td>
<td>48</td>
<td>0.0913</td>
<td></td>
</tr>
<tr>
<td></td>
<td>凹形</td>
<td>40</td>
<td>-0.2063</td>
<td>0.3055</td>
</tr>
<tr>
<td></td>
<td>直線形</td>
<td>39</td>
<td>0.0992</td>
<td></td>
</tr>
<tr>
<td>背後斜面勾配</td>
<td>-90°～-51°</td>
<td>3</td>
<td>0.2426</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-50°～-31°</td>
<td>7</td>
<td>-0.0221</td>
<td>0.2647</td>
</tr>
<tr>
<td></td>
<td>-30°～-11°</td>
<td>30</td>
<td>0.0040</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-10°～9°</td>
<td>54</td>
<td>-0.0009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10°以上</td>
<td>33</td>
<td>-0.0195</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>アイテム</th>
<th>カテゴリー</th>
<th>度数</th>
<th>スコア</th>
<th>レンジ</th>
</tr>
</thead>
<tbody>
<tr>
<td>切土断面積</td>
<td>0m～9m</td>
<td>23</td>
<td>-0.1536</td>
<td>0.2488</td>
</tr>
<tr>
<td></td>
<td>10m～19m</td>
<td>48</td>
<td>-0.0028</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20m～29m</td>
<td>40</td>
<td>0.0952</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30m～39m</td>
<td>12</td>
<td>0.0216</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40m以上</td>
<td>4</td>
<td>-0.0997</td>
<td></td>
</tr>
<tr>
<td>遷移線</td>
<td>あり</td>
<td>32</td>
<td>0.1624</td>
<td>0.2171</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>95</td>
<td>-0.0547</td>
<td></td>
</tr>
<tr>
<td>切土の位置</td>
<td>山腹</td>
<td>52</td>
<td>0.1187</td>
<td>0.2010</td>
</tr>
<tr>
<td></td>
<td>山頂</td>
<td>75</td>
<td>-0.0823</td>
<td></td>
</tr>
<tr>
<td>リニアメント</td>
<td>あり</td>
<td>82</td>
<td>0.0680</td>
<td>0.1920</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>45</td>
<td>-0.1240</td>
<td></td>
</tr>
<tr>
<td>丘状地形</td>
<td>あり</td>
<td>45</td>
<td>0.0065</td>
<td>0.1495</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>82</td>
<td>-0.0530</td>
<td></td>
</tr>
<tr>
<td>非対称山地</td>
<td>あり</td>
<td>89</td>
<td>0.0433</td>
<td>0.1448</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>38</td>
<td>-0.1015</td>
<td></td>
</tr>
<tr>
<td>路線の方向と地層の走向との角</td>
<td>0°～19°</td>
<td>40</td>
<td>0.0440</td>
<td>0.1170</td>
</tr>
<tr>
<td></td>
<td>20°～39°</td>
<td>32</td>
<td>0.0339</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40°～59°</td>
<td>19</td>
<td>-0.0730</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60°～79°</td>
<td>25</td>
<td>-0.0729</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80°以上</td>
<td>11</td>
<td>0.0160</td>
<td></td>
</tr>
</tbody>
</table>
表—9 概略設計段階のサンプルスコアの値とその箇所数および比率
Table 9 Grade of sample scores, the number of sites of each grade and ratio at the schematic design stage

<table>
<thead>
<tr>
<th>級</th>
<th>箇所数</th>
<th>箇所数</th>
<th>箇所数比率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>全体</td>
<td>発生箇所</td>
<td>非発生箇所</td>
</tr>
<tr>
<td>-0.7886 ～ -0.6074</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>-0.6075 ～ -0.4262</td>
<td>14</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>-0.4263 ～ -0.2451</td>
<td>21</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>-0.2452 ～ -0.0640</td>
<td>24</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>-0.0641 ～ 0.1170</td>
<td>19</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>0.1171 ～ 0.2981</td>
<td>14</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>0.2982 ～ 0.4793</td>
<td>15</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>0.4794 ～ 0.6604</td>
<td>12</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>0.6605 ～ 0.8416</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>0.8417 ～ 1.0228</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>合計</td>
<td>127</td>
<td>47</td>
<td>80</td>
</tr>
</tbody>
</table>

図—42 概略設計段階のサンプルスコアの級別頻度
Fig. 42 Frequency of grades of sample scores at the schematic design stage

表—10 概略設計段階の崩壊予測区分
Table 10 Classification of slope failure prediction at the schematic design stage

<table>
<thead>
<tr>
<th>地すべり発生の可能性</th>
<th>サンプルスコア</th>
</tr>
</thead>
<tbody>
<tr>
<td>大</td>
<td>0.2982以上</td>
</tr>
<tr>
<td>中</td>
<td>-0.0641～0.2981</td>
</tr>
<tr>
<td>小</td>
<td>-0.0640以下</td>
</tr>
</tbody>
</table>

詳細設計段階においては、さきの段階の場合よりも、さらに詳細なデータが入手できることから、表—11に示すような27個のアイテムを選択した。なお、さきの段階において、「地層の傾斜」というアイテムのカテゴリを流れ盤、受け皿、水平としていたが、この段階では、見掛けの傾斜を角度で表すことができるので、アイテムの名称を「見掛けの傾斜（地層の）」とし、カテゴリを-40°～-21°、-20°～-1°、0°～19°、20°以上の4段階に区分した。また、「地質」のカテゴリは地質名を採用し、砂岩と頁岩の占める割合の多少によって、砂岩、
表11 詳細設計段階のアイテム、カテゴリーおよび偏相関係数
Table 11 Items, categories and partial correlation coefficient at the detailed design stage

<table>
<thead>
<tr>
<th>アイテム</th>
<th>カテゴリー</th>
<th>偏相関係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 見掛けの傾斜（地層の）</td>
<td>-40°〜-21°、-20°〜-1°、0°〜19°、20°以上</td>
<td>0.4886</td>
</tr>
<tr>
<td>2 路線の平面形状</td>
<td>凸形、凹形、直線形</td>
<td>0.4025</td>
</tr>
<tr>
<td>3 自然斜面勾配</td>
<td>-40°〜11°、-10°〜9°、10°〜29°、30°以上</td>
<td>0.3488</td>
</tr>
<tr>
<td>4 平均のり勾配</td>
<td>1：1.5以下、1：1.4〜1：1.2、1：1.4〜1：1.0、1：0.9以上</td>
<td>0.2454</td>
</tr>
<tr>
<td>5 非対称山地</td>
<td>あり、なし</td>
<td>0.2146</td>
</tr>
<tr>
<td>6 貫入岩</td>
<td>あり、なし</td>
<td>0.2076</td>
</tr>
<tr>
<td>7 棕炭岩</td>
<td>あり、なし</td>
<td>0.1994</td>
</tr>
<tr>
<td>8 リニアメント</td>
<td>あり、なし</td>
<td>0.1898</td>
</tr>
<tr>
<td>9 切土の位置</td>
<td>山腹、山頂</td>
<td>0.1887</td>
</tr>
<tr>
<td>10 斜面の断面形</td>
<td>凸形、直線形、凹形、複合形</td>
<td>0.1861</td>
</tr>
<tr>
<td>11 背後斜面勾配</td>
<td>±80°〜-51°、-50°〜-31°、-30°〜-11°、10°〜10°まで、10°以上</td>
<td>0.1835</td>
</tr>
<tr>
<td>12 切土断面積／切土のり高</td>
<td>0〜9m、10〜19m、20〜29m、30〜39m、40m以上</td>
<td>0.1679</td>
</tr>
<tr>
<td>13 橫断面</td>
<td>あり、なし</td>
<td>0.1670</td>
</tr>
<tr>
<td>14 斜面の平面形状</td>
<td>尾根形、直線形、複合形</td>
<td>0.1419</td>
</tr>
<tr>
<td>15 斜面</td>
<td>あり、近接、なし</td>
<td>0.1361</td>
</tr>
<tr>
<td>16 路線の方向と地層</td>
<td>0°〜15°、20°〜35°、40°〜59°、60°〜79°、80°以上</td>
<td>0.1326</td>
</tr>
<tr>
<td>17 地質</td>
<td>砂岩、頁岩、頁岩、頁岩、頁岩、頁岩、頁岩、頁岩</td>
<td>0.1223</td>
</tr>
<tr>
<td>18 等高線の歪曲</td>
<td>あり、なし</td>
<td>0.1198</td>
</tr>
<tr>
<td>19 のり面の形状</td>
<td>円形、円錐形、複合形、扁平形</td>
<td>0.1098</td>
</tr>
<tr>
<td>20 枕面</td>
<td>あり、なし</td>
<td>0.1036</td>
</tr>
<tr>
<td>21 地すべり帯</td>
<td>あり、なし</td>
<td>0.0958</td>
</tr>
<tr>
<td>22 群状地形</td>
<td>あり、なし</td>
<td>0.0878</td>
</tr>
<tr>
<td>23 崖面</td>
<td>あり、なし</td>
<td>0.0348</td>
</tr>
<tr>
<td>24 崩壊地</td>
<td>あり、なし</td>
<td>0.0196</td>
</tr>
<tr>
<td>25 切土の形状</td>
<td>Vカット、スライスカット</td>
<td>0.0112</td>
</tr>
<tr>
<td>26 緩斜面</td>
<td>あり、なし</td>
<td>0.0107</td>
</tr>
<tr>
<td>27 沢状地形</td>
<td>あり、なし</td>
<td>0.0042</td>
</tr>
</tbody>
</table>

砂岩＞頁岩，頁岩＞頁岩，頁岩＞頁岩，頁岩の5つに区分した。この場合に、データ抽出した箇所は、発生箇所については47箇所、非発生箇所については80箇所で、全体では127箇所であった。

表11に示した27個のアイテムを用いて求められた判別的中率および相関比とアイテムの個数との関係は、図43に示す通りである。これによると、判別的中率はバラツキが大きく、しかもアイテムの個数が大きくなるにしたがって低くなる傾向が見られる。これに対して、相関比は、アイテムの個数が10個と21個の間では1個あたり0.0036の割合で増加している。これに対して、21個以上では0.0005の割合で若干大きくなっているが、大きな変化は見られない。アイテムの個数が21個のときの判別的中率は89.8%で、最大値（アイテムの個数が15個のとき：93%）の97%となることから、偏相関係数の大きい21個のアイテムを用いて分析を行った。この場合に、表11においては、岩層の偏相関係数を23番目であったが、27個のアイテムの偏相関係数の小さいものから除去しながら、判別的中率および相関比を求めた結果において、岩層が21番目に位置する結果となった。求めら
表-12 詳細設計段階のアイテムのスコアおよびレンジ
Table 12 Item scores and ranges at the detailed design stage

<table>
<thead>
<tr>
<th>アイテム</th>
<th>カテゴリー</th>
<th>度数</th>
<th>スコア</th>
<th>レンジ</th>
<th>アイテム</th>
<th>カテゴリー</th>
<th>度数</th>
<th>スコア</th>
<th>レンジ</th>
</tr>
</thead>
<tbody>
<tr>
<td>見掛けの傾斜（地層の）</td>
<td>-40°〜-21°</td>
<td>5</td>
<td>-0.2939</td>
<td>0.5809</td>
<td>背後斜面勾配</td>
<td>-90°〜-51°</td>
<td>3</td>
<td>0.1597</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-20°〜-1°</td>
<td>45</td>
<td>-0.2137</td>
<td></td>
<td></td>
<td>-50°〜-31°</td>
<td>7</td>
<td>0.0007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0°〜19°</td>
<td>70</td>
<td>0.1297</td>
<td></td>
<td></td>
<td>-30°〜-11°</td>
<td>30</td>
<td>0.0633</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20°以上</td>
<td>7</td>
<td>0.2870</td>
<td></td>
<td></td>
<td>-10°〜9°</td>
<td>54</td>
<td>0.0209</td>
<td></td>
</tr>
<tr>
<td>自然斜面勾配</td>
<td>-40°〜-11°</td>
<td>15</td>
<td>-0.3397</td>
<td>0.4768</td>
<td>10°以上</td>
<td>10m〜9m</td>
<td>23</td>
<td>-0.1433</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-10°〜9°</td>
<td>45</td>
<td>-0.0676</td>
<td></td>
<td></td>
<td>10m〜19m</td>
<td>48</td>
<td>-0.0079</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10°〜29°</td>
<td>58</td>
<td>0.1190</td>
<td></td>
<td></td>
<td>20m〜29m</td>
<td>40</td>
<td>0.0630</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30°以上</td>
<td>9</td>
<td>0.1371</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2531</td>
</tr>
<tr>
<td>質入岩</td>
<td>あり</td>
<td>3</td>
<td>-0.4196</td>
<td>0.4298</td>
<td>切土断面積/切土のり高</td>
<td>30m〜33m</td>
<td>12</td>
<td>0.1098</td>
<td></td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>124</td>
<td>0.0102</td>
<td></td>
<td></td>
<td>40m以上</td>
<td>4</td>
<td>-0.0404</td>
<td></td>
</tr>
<tr>
<td>平均のり勾配</td>
<td>1:1.5以下</td>
<td>11</td>
<td>-0.0702</td>
<td>0.3295</td>
<td>凸形</td>
<td>65</td>
<td></td>
<td>-0.0507</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:1.4〜1:1.2</td>
<td>45</td>
<td>0.0256</td>
<td></td>
<td>直線形</td>
<td>41</td>
<td></td>
<td>0.0133</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:1.1〜1:1.0</td>
<td>63</td>
<td>-0.0390</td>
<td></td>
<td>凹形</td>
<td>7</td>
<td></td>
<td>0.0022</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:0.9以上</td>
<td>8</td>
<td>0.2593</td>
<td></td>
<td>複合形</td>
<td>14</td>
<td></td>
<td>0.1954</td>
<td></td>
</tr>
<tr>
<td>路線の平面線形</td>
<td>凸形</td>
<td>48</td>
<td>0.0573</td>
<td>0.3099</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>凹形</td>
<td>40</td>
<td>-0.1878</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>直線形</td>
<td>39</td>
<td>0.1221</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アイテム</td>
<td>カテゴリー</td>
<td>数</td>
<td>スコア</td>
<td>レンジ</td>
<td>アイテム</td>
<td>カテゴリー</td>
<td>数</td>
<td>スコア</td>
<td>レンジ</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>----</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>------------</td>
<td>----</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>滑落崖</td>
<td>あり</td>
<td>10</td>
<td>0.2029</td>
<td>0.2202</td>
<td>切土の位置</td>
<td>山腹</td>
<td>52</td>
<td>0.0810</td>
<td>0.1371</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>117</td>
<td>-0.0173</td>
<td></td>
<td>山頂</td>
<td>75</td>
<td>-0.0561</td>
<td></td>
<td></td>
</tr>
<tr>
<td>断層</td>
<td>あり</td>
<td>11</td>
<td>-0.1025</td>
<td>0.2040</td>
<td>遲急線</td>
<td>あり</td>
<td>32</td>
<td>0.1003</td>
<td>0.1341</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>9</td>
<td>0.1015</td>
<td></td>
<td>なし</td>
<td>95</td>
<td>-0.0338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>非対称山地</td>
<td>あり</td>
<td>89</td>
<td>0.0511</td>
<td>0.1709</td>
<td>砂岩</td>
<td>49</td>
<td>-0.0358</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>38</td>
<td>-0.1198</td>
<td></td>
<td>砂岩>頁岩</td>
<td>14</td>
<td>-0.0438</td>
<td></td>
<td></td>
</tr>
<tr>
<td>斜面の平面形</td>
<td>尾根形</td>
<td>81</td>
<td>0.0268</td>
<td></td>
<td>砂岩<頁岩</td>
<td>26</td>
<td>0.0615</td>
<td>0.1053</td>
<td></td>
</tr>
<tr>
<td></td>
<td>直線形</td>
<td>15</td>
<td>0.0638</td>
<td>0.1648</td>
<td>页岩</td>
<td>17</td>
<td>-0.0119</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>複合形</td>
<td>31</td>
<td>-0.1010</td>
<td></td>
<td>104</td>
<td>40</td>
<td>-0.0719</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>32</td>
<td>0.0667</td>
<td></td>
<td>なし</td>
<td>87</td>
<td>0.0331</td>
<td>0.1050</td>
<td></td>
</tr>
<tr>
<td>路線の方向と地層の走向とのなす角</td>
<td>0°〜19°</td>
<td>40</td>
<td>0.0022</td>
<td>0.1458</td>
<td>円形+円錐形</td>
<td>66</td>
<td>-0.0349</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20°〜39°</td>
<td>32</td>
<td>0.0667</td>
<td></td>
<td>複合形</td>
<td>17</td>
<td>-0.0058</td>
<td>0.0895</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40°〜59°</td>
<td>19</td>
<td>-0.0791</td>
<td></td>
<td>扁平形</td>
<td>44</td>
<td>0.0546</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60°〜79°</td>
<td>25</td>
<td>-0.0377</td>
<td></td>
<td>なし</td>
<td>15</td>
<td>0.0501</td>
<td>0.0568</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80°以上</td>
<td>11</td>
<td>0.0203</td>
<td></td>
<td>なし</td>
<td>112</td>
<td>-0.0067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>リニアメント</td>
<td>あり</td>
<td>82</td>
<td>0.0500</td>
<td>0.1411</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>45</td>
<td>-0.0911</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表13 詳細設計段階のサンプルスコアの級とその箇所数および比率

Table 13 Grade of sample scores, the number of sites of each grade
and ratio at the detailed design stage

<table>
<thead>
<tr>
<th>級</th>
<th>箇所数</th>
<th>発生箇所</th>
<th>非発生箇所</th>
<th>発生箇所数比率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.7222 ～ -0.5311</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0.0</td>
</tr>
<tr>
<td>-0.5312 ～ -0.3402</td>
<td>22</td>
<td>0</td>
<td>22</td>
<td>0.0</td>
</tr>
<tr>
<td>-0.2403 ～ -0.1492</td>
<td>27</td>
<td>0</td>
<td>27</td>
<td>0.0</td>
</tr>
<tr>
<td>-0.1493 ～ 0.0416</td>
<td>22</td>
<td>4</td>
<td>18</td>
<td>8.5</td>
</tr>
<tr>
<td>-0.0417 ～ 0.2325</td>
<td>14</td>
<td>8</td>
<td>6</td>
<td>17.0</td>
</tr>
<tr>
<td>0.2328 ～ 0.4235</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td>17.0</td>
</tr>
<tr>
<td>0.4236 ～ 0.6144</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>34.0</td>
</tr>
<tr>
<td>0.6145 ～ 0.8054</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>17.0</td>
</tr>
<tr>
<td>0.8055 ～ 0.9963</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4.3</td>
</tr>
<tr>
<td>0.9964 ～ 1.1872</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2.1</td>
</tr>
<tr>
<td>合計</td>
<td>127</td>
<td>47</td>
<td>80</td>
<td>100.0</td>
</tr>
</tbody>
</table>

図14 詳細設計段階のサンプルスコアの級別頻度

Fig. 44 Frequency of grades of sample scores at the detailed design stage

表14 詳細設計段階の崩壊予測区分

Table 14 Classification of slope failure prediction at the detailed design stage

<table>
<thead>
<tr>
<th>地すべり発生の可能性</th>
<th>サンプルスコア</th>
</tr>
</thead>
<tbody>
<tr>
<td>大</td>
<td>0.4236 以上</td>
</tr>
<tr>
<td>中</td>
<td>-0.1493 ～ 0.4235</td>
</tr>
<tr>
<td>小</td>
<td>-0.1492 以下</td>
</tr>
</tbody>
</table>

この分析結果を概略設計段階の分析結果と比較すると、'見掛けの傾斜（地盤の)’，'自然斜面勾配'，'平均のり勾配'，'路線の面積形'などのアイテムのレンジが大きいこと，また，それらのアイテムのカテゴリーのスコアの大小関係も同様の傾向にあることがうかがえる。なお，'貫入岩'の有無についてのアイテムのレンジが'自然斜面勾配'についての三番目の大きさを示しているが，これは，貫入岩が存在した3箇所のみの面のすべてが非
発生箇所であったことによるためである。

表－12に示した各カテゴリのスコアから求めたサンプルスコア（最大：1.1872，最小：-0.7222）を10個の級に分け，それらの級における発生箇所数と非発生箇所数およびそれらの比率を示すと，表－13のようになる。

そのヒストグラムを図－44に示す。これによると，サンプルスコアが0.4296以上の場合は，27箇所のすべてにおいて地すべりが発生しており，一方，-0.6192以下の場合は，地すべりが発生していない。これに基づいて地すべり発生の可能性を3段階に区分すると，表－14のようになる。

4・3・4 形態別による要因分析の結果

表－12に示したように，当路線における切土工事に際して発生した地すべりは，規模の小さい崩壊型と比較的規模の大きさの地すべり型に分けることができる。地すべり発生の初期から対策工を施用するまでには長い時間を要し，しかも，対策工費が増大することから，地すべりの形態を正しく推定することができれば，事前に詳細な調査を実施して，情報化施工を行うことが可能となり，工期の短縮や工費の節減に結びつくことになる。

このために，崩壊型地すべり型とを区別するためのアイテムとカテゴリを求めることを目的として，さきに述べた詳細設計段階の場合と同様のアイテムとカテゴリを設定したが，サンプルの数が地すべりが発生した52箇所となるため，実際に抽出することができたアイテムは表－15に示す20個であった。

これらの結果から求められた判別的中率および相関比とアイテムの個数との関係は図－45に示す通りである。この図によると，判別的中率はバラツキが大きいが，アイテムの個数が16個までの次第に大きくなるが，20個の場合は，アイテムの個数が15の場合と同じ程度に低くなっている。一方，相関比については，アイテムの個数が
表-16 形態別のアイテムのスコアおよびレンジ
Table 16 Item scores and ranges regarding of the types of landslide

<table>
<thead>
<tr>
<th>アイテム</th>
<th>カテゴリー</th>
<th>度数</th>
<th>スコア</th>
<th>レンジ</th>
</tr>
</thead>
<tbody>
<tr>
<td>地質</td>
<td>砂岩</td>
<td>18</td>
<td>0.1766</td>
<td>0.6592</td>
</tr>
<tr>
<td></td>
<td>砂岩>頁岩</td>
<td>3</td>
<td>0.4019</td>
<td></td>
</tr>
<tr>
<td></td>
<td>砂岩=頁岩</td>
<td>15</td>
<td>-0.0932</td>
<td></td>
</tr>
<tr>
<td></td>
<td>砂岩<頁岩</td>
<td>12</td>
<td>-0.1632</td>
<td></td>
</tr>
<tr>
<td></td>
<td>頁岩</td>
<td>4</td>
<td>-0.2573</td>
<td></td>
</tr>
<tr>
<td></td>
<td>あり</td>
<td>2</td>
<td>-0.4653</td>
<td>0.4908</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>45</td>
<td>0.0255</td>
<td></td>
</tr>
<tr>
<td>断層</td>
<td>あり</td>
<td>23</td>
<td>-0.2444</td>
<td>0.4383</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>29</td>
<td>0.1939</td>
<td></td>
</tr>
<tr>
<td>泥炭灰岩</td>
<td>あり</td>
<td>11</td>
<td>-0.3429</td>
<td>0.4349</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>41</td>
<td>0.0920</td>
<td></td>
</tr>
<tr>
<td>滑落崖</td>
<td>あり</td>
<td>11</td>
<td>-0.3429</td>
<td>0.4383</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>41</td>
<td>0.0920</td>
<td></td>
</tr>
<tr>
<td>非対称山地</td>
<td>あり</td>
<td>11</td>
<td>-0.3429</td>
<td>0.4383</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>41</td>
<td>0.0920</td>
<td></td>
</tr>
<tr>
<td>斜面の平面形</td>
<td>尾根形</td>
<td>26</td>
<td>-0.1291</td>
<td>0.3641</td>
</tr>
<tr>
<td></td>
<td>直線形</td>
<td>12</td>
<td>0.0057</td>
<td></td>
</tr>
<tr>
<td></td>
<td>複合形</td>
<td>14</td>
<td>0.2350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>あり</td>
<td>17</td>
<td>0.1517</td>
<td></td>
</tr>
<tr>
<td>斜面の断面形</td>
<td>直線形</td>
<td>20</td>
<td>-0.0237</td>
<td>0.3027</td>
</tr>
<tr>
<td></td>
<td>凹形</td>
<td>4</td>
<td>-0.1109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>複合形</td>
<td>11</td>
<td>-0.1510</td>
<td></td>
</tr>
<tr>
<td>崖</td>
<td>あり</td>
<td>12</td>
<td>-0.2271</td>
<td>0.2952</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>40</td>
<td>-0.0881</td>
<td></td>
</tr>
<tr>
<td>崩壊地</td>
<td>あり</td>
<td>18</td>
<td>0.1869</td>
<td>0.2859</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>34</td>
<td>-0.0990</td>
<td></td>
</tr>
<tr>
<td>切土の位置</td>
<td>山腹</td>
<td>35</td>
<td>-0.0917</td>
<td>0.2806</td>
</tr>
<tr>
<td></td>
<td>山頂</td>
<td>17</td>
<td>0.1889</td>
<td></td>
</tr>
<tr>
<td>路線の平面線形</td>
<td>凸形</td>
<td>19</td>
<td>-0.1402</td>
<td>0.2566</td>
</tr>
<tr>
<td></td>
<td>凹形</td>
<td>9</td>
<td>-0.0146</td>
<td></td>
</tr>
<tr>
<td></td>
<td>直線形</td>
<td>24</td>
<td>0.1164</td>
<td></td>
</tr>
<tr>
<td>のり面の形状</td>
<td>円形＋円錐形</td>
<td>22</td>
<td>-0.0522</td>
<td></td>
</tr>
<tr>
<td></td>
<td>複合形</td>
<td>7</td>
<td>0.1656</td>
<td>0.2178</td>
</tr>
<tr>
<td></td>
<td>扁平形</td>
<td>23</td>
<td>-0.0005</td>
<td></td>
</tr>
<tr>
<td>丘状地形</td>
<td>あり</td>
<td>20</td>
<td>-0.1257</td>
<td>0.2042</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>32</td>
<td>0.0785</td>
<td></td>
</tr>
<tr>
<td>地すべり地帯</td>
<td>あり</td>
<td>8</td>
<td>-0.1684</td>
<td>0.1990</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>44</td>
<td>0.0306</td>
<td></td>
</tr>
<tr>
<td>等高線の乱れ</td>
<td>あり</td>
<td>25</td>
<td>-0.0947</td>
<td>0.1824</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>27</td>
<td>0.0877</td>
<td></td>
</tr>
</tbody>
</table>
表-17 形態別サンプルスコアの級とその箇所数および比率
Table 17 Grade of sample scores, the number of sites of each grade and ratio regarding of the types of landslide

<table>
<thead>
<tr>
<th>級</th>
<th>地すべり箇所数</th>
<th>箇所数比率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>全体 崩壊型 地すべり型</td>
<td>崩壊型 地すべり型</td>
</tr>
<tr>
<td>-0.5828 ～ -0.4278</td>
<td>6 0 6</td>
<td>0.0 17.6</td>
</tr>
<tr>
<td>-0.4279 ～ -0.2728</td>
<td>10 0 10</td>
<td>0.0 29.4</td>
</tr>
<tr>
<td>-0.2729 ～ -0.1179</td>
<td>7 0 7</td>
<td>0.0 20.6</td>
</tr>
<tr>
<td>-0.1180 ～ 0.0369</td>
<td>9 2 7</td>
<td>11.1 20.6</td>
</tr>
<tr>
<td>0.0370 ～ 0.1918</td>
<td>5 2 3</td>
<td>11.1 8.8</td>
</tr>
<tr>
<td>0.1919 ～ 0.3468</td>
<td>5 4 1</td>
<td>22.2 2.9</td>
</tr>
<tr>
<td>0.3469 ～ 0.5017</td>
<td>2 2 0</td>
<td>11.1 0.0</td>
</tr>
<tr>
<td>0.5018 ～ 0.6567</td>
<td>4 4 0</td>
<td>22.2 0.0</td>
</tr>
<tr>
<td>0.6568 ～ 0.8116</td>
<td>3 3 0</td>
<td>16.7 0.0</td>
</tr>
<tr>
<td>0.8117 ～ 0.9655</td>
<td>1 1 0</td>
<td>5.6 0.0</td>
</tr>
<tr>
<td>合計</td>
<td>52 18 34</td>
<td>100.0 100.0</td>
</tr>
</tbody>
</table>

図-46 形態別のサンプルスコアの級別頻度
Fig. 46 Frequency of grades of sample scores regarding of the types of landslide

表-18 形態別の崩壊予測区分
Table 18 Classification of slope failure prediction regarding of the types of landslide

<table>
<thead>
<tr>
<th>地すべりの形態</th>
<th>サンプルスコア</th>
</tr>
</thead>
<tbody>
<tr>
<td>崩壊型</td>
<td>0.3469 以上</td>
</tr>
<tr>
<td>崩壊型～地すべり型</td>
<td>-0.1130 ～ 0.3468</td>
</tr>
<tr>
<td>地すべり型</td>
<td>-0.1179 以下</td>
</tr>
</tbody>
</table>

14個までは、若干のバラツキは見られるが、1個あたり0.0158の割合で増加している。しかし、アイテムの数が15を越えると増加はほとんど見られない。このようなことから、偏相關係数の大きい順に15個のアイテムを用いて分析を行った。得られた各アイテムのカテゴリのスコアおよびアイテムのレンジを表-16に示す。

この地すべりの形態についての結果を詳細設計段階における地すべり発生についての結果と比較すると、詳細設計段階の場合に18番目であった‘地質’のレンジが最
表19 地すべり発生に対する地形・地質条件および道路構造条件の影響度を一覧

<table>
<thead>
<tr>
<th>項目</th>
<th>予備設計段階</th>
<th>概略設計段階</th>
<th>詳細設計段階</th>
<th>総合</th>
</tr>
</thead>
<tbody>
<tr>
<td>のり面の向き</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>のり面の形状</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>C</td>
</tr>
<tr>
<td>路線の平面線形</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>切土の位置</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>切土の形状</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>C</td>
</tr>
<tr>
<td>斜面の平面形状</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>斜面の断面形状</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>A</td>
</tr>
<tr>
<td>避難線</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>B</td>
</tr>
<tr>
<td>等高線の乱れ</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>A</td>
</tr>
<tr>
<td>丘状地形</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>沼状地形</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>隣斜面</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>崩壊地</td>
<td>O</td>
<td>-</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>滑落堆</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>障害地</td>
<td>O</td>
<td>-</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>地すべり地帯</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>C</td>
</tr>
<tr>
<td>非対称山地</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>B</td>
</tr>
<tr>
<td>リニアメント</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>B</td>
</tr>
<tr>
<td>地質</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>B</td>
</tr>
<tr>
<td>岩溶岩</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>B</td>
</tr>
<tr>
<td>崖壁</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>B</td>
</tr>
<tr>
<td>貫入岩</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>B</td>
</tr>
<tr>
<td>断層</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>C</td>
</tr>
<tr>
<td>植生状況</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>C</td>
</tr>
<tr>
<td>切土断面積</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>C</td>
</tr>
<tr>
<td>切土の高さ</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>C</td>
</tr>
<tr>
<td>平均のり勾配</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>自然斜面勾配</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>路線の方向と地層の走向とのつながる角度</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>背後斜面勾配</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>地層の傾斜</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>C</td>
</tr>
</tbody>
</table>
5 まとめ

以上に述べたように、地質が古第三紀新生代の栃島層群のところを通過する武雄佐世保道路の建設においては、掘り進む多くの切土工事が行われ、それに伴って多数の地すべり発生が発生したのであるが、各切土箇所において、情報発表等が行われ、切土箇所の地形、地質条件や道路構造条件に関する詳細なデータが保存されていた。これらの地形、地質条件や道路構造条件のうち、表一に示した32の項目と、それに加えるに地すべり箇所の項目を、地すべり発生との関係を考察した。

地すべりの発生と各項目ごとの関係については、頻度分析を行い、さらに、予備設計段階、概略設計段階、詳細設計段階の3つの場合について、変量解析を行ったが、これらの結果を用いて、今後の、同じような地質条件にある地域において、切土工事等計画・実施する場合の参考するために、地すべり発生に対する各項目の関係度を総合的に判定した。その結果は表一に示す通りである。

表一九において、頻度分析の結果（3・1・2参考）については、地すべり発生との関係が比較的高くとった項目を○印、やや関係あるとした項目を△印、関係がないとした項目を×印で表している。また、変量解析の結果については、解析対象としたアイテムのうち、解析に使用しなかったアイテムを×印で表し、解析対象としたアイテムのうち、求められたレンジ値が0.4以上のものを○印、0.2以上0.4未満のものを△印、0.1以上0.2未満のものを△印、0.1未満のものを×印で表してある。

以上のような分析に基づいて4つの結果を総合的に判断すると、表一九の右端のように示すことができる。

Aに属する項目は、路線の斜面線形、地質の位置、斜面の断面形、遮蔽面、断面積、地質断面の高、平均の勾配、自然状況勾配、背後の斜面勾配、地層の傾斜の10項目で、これらの項目は地すべり発生に大きく関与することが考えられ、必ず検討対象として採用すべきものである。

斜面の表面形、等高線の乱れ、丘状地形、崩壊、滑落、非対称山地、リニアメント、地質、崖壁、入谷、断層、路線の方向と地層の傾斜によるもので12個目のBに属しており、地すべり発生に対しては、Aほど大きく関与しないと考えられるが、十分に調べておくことは必要である。

なお、Cに属する11項目は、地すべり発生にはさほど関与しないであろうが、一応検討対象とする必要があると考えられる。

なお、この報文で取り扱った項目（アイテム）は、地形条件、地質条件および道路構造条件であるが、降雨などの気象災害や土工速度などの施工条件は考慮していない。降雨に関しては、2箇所において変位との関連が認められたが、ほとんどの切土箇所は降雨あるいは地下水に関与することなく変位が起こっているため、項目（アイテム）としては採用しなかった。しかしながら、一般には、降雨によって地すべりの発生が不安定になることがから、一般要因として見落とすわけにはいかないと考えられる。

また、施工条件では、応力解放による強度低下を考慮ののと及時的に評価することは必要であり、この事項が必要とすることも重要である。

ここに述べた解析結果は、入手できた多数の正確なデータを最大限に活用して実施することができたために、かなりの精度を持っているものと考えている。したがって、この武雄佐世保道路の場合と同じような地形、地質条件にある地域、たとえば、九州西部地方（直層層群、土に殻プレート構造群、対馬地方（対馬層群）などの道路計画における地すべりの予測および施工対策に役立つものと考えている。

謝辞

この報文の執筆にあたっては、貴重なデータの提供を受けて、また、それらのデータの使用に当たり、御理解をいただくとともに、懇切なる御指導を賜った日本道路公団の酒井武氏（当時福岡建設局武雄佐世保道路工事事務所長、現在本社技術部長）を始め、関係各位のご親善に対し、心から感謝の意を表します。

参考文献

鍵手勝美、桂貴浩、小野仁、井出修（1987）：古第
三紀記の層群の切土によるすべりについて 第23回土質工学研究発表会論文集 pp.171～172。

村上佳利、五味貞夫(1990)：切取り斜面の土質強度に対する影響に関する研究報告

中村康夫、平野 勇、佐々木雄人、石塚克己、阿部信彦(1989)：道路のり面・斜面崩壊調査（その2）

付記——情報化施工の一例

本文にも述べたことであるが、武雄佐世保道路のⅠ期区間およびⅡ期区間の22.1kmの間においては、切土工

区間すべり対策検討報告書

日本道路協会(1986)：道路土工－一のり面工・斜面安定工法

瀬田 武、小野 仁、並出 修(1988)：地すべり地帯における道路切土の情報化工事 第4号、pp.37～42。

瀬田 武、小野 仁(1990)：古第三紀層地すべりにおけるのり面の安定化 土木技術 45巻 3号 pp.67～76。

瀬田 武、小野 仁、村田昭明、前島俊哉(1991)：古第三紀層地すべりの要因分析結果 第27回土質工学研究発表会。

田原 武、小野 仁、並出 修(1991)：古第三紀層の切土工に伴う地中変位測定例 第36回土質工学シンポジウム。

図-1 A箇所の平面図
Fig.1 Plan of A area
ことによって、施工性および経済性を考慮した対策工を行って、被害を極力少なくすることができた。また、情報化施策を実施したことによって、この報文において使用したような、各切土工事箇所のそれぞれの情報を得ることができた。

したがって、何らかの参考になればと考え、この道路建設に際して実施した情報化施策における調査・解析の一端を紹介することにした。

本文の3・2において述べたように、当地域の地すべりは、5つのタイプに分けることができた。これらのもうち、当地域における特徴的な地すべりであるところの塩地の移動速度は緩慢であるが、すべりの規模が大きいタイプ③（風化礁灰岩をすべり面とするもの）に該当する地すべりが発生したA箇所の状況について述べる。

(1) 地形および地質

A箇所の平面図を図11に示す。この図からわかるように、当地箇所は四面斜面の末端付近を切土したもので、地形的には等高線の乱れが認められること、変形した立木が見られることなどから推定すると、古い地すべり地である可能性を含んでいる。

地質は、砂岩と頁岩との互層からなり、地層は切土の裏面に対しては流れ盤となっている。地表から約15mくらいまでは風化しており、それ以深は新鮮な岩盤である。なお、風化岩盤と新鮮岩盤との境界には、粘土化した風化礁灰岩の薄層を挟んでいる。

(2) 切土工事に伴う地すべりの発生状況

図11 模式断面図
Fig.11 Schematic cross section of A area

図12 伸縮計観測結果
Fig.12 Displacement measured by extensometer
図一Ⅳ 地中変位の発生状態模式図
Fig.IV Start pattern of in-sit displacement

切土工事に伴う地山の変位を把握するため、図一に示す位置に、孔内傾斜計（7孔）および伸縮計（7測線）を設置した。図一に示す断面図におけるこれらの計測器の位置関係を図一Ⅱの断面図に示している。

(a) 伸縮計による地山の変位
図一Ⅱに示す伸縮計（S-1, S-2, S-3, S-4）によって求められた変位の経時変化を図一Ⅱに示す。この結果によると、まず切土位置に最も近い伸縮計（S-1）に変位が顕れ、その後の切土工事の進展に伴って、順次上部の伸縮計へと、変位領域が拡大していく様子が明瞭に示されている。特に、伸縮計S-1では、圧縮側への変位と引張り側への変位を繰返しながら、徐々に引張り側への変位が増大していることが認められる。

(b) 孔内傾斜計による地中の変位
図一Ⅱに示すB, CおよびDの3つの観測孔における孔内傾斜計による地中変位の計測結果によれば、この図に示すように、各孔とも、およそ15mくらいの深度において、明確な非線形変位が認められた。

図一V逆解析から求められたc' とtanφ'の関係
Fig.V Relation between the cohesion and the angle of shear resistance from inversion analysis
図—VI せん断変位量とc'および$tan\phi'$との関係
Fig.VI Relation between the shear displacement and c' and $tan\phi'$

(c) ブロック①、ブロック②およびブロック③を一体とした場合
について、変位の観測結果から、平面すべきを基本とする複合すべき面を推定し、スライス分断法による簡便法を用いて、安定解析を実施した。

図—Vは、上記の3ケースについて、安定率 $F_0=1.0$として逆算して求めたc'（見掛けの粘着力）と $tan\phi'$（せん断抵抗角）の関係を示したものである。この図によって明らかのように、すべき面の長さが大きくなる、すなわち、すべきの規模が拡大するにしたがって、c'の値に対する$tan\phi'$の値（$tan\phi'$の値に対するc'の値）が小さくなることがわかる。

図—VIは、孔内傾斜計による観測結果から推定したすべき面付近のせん断変位量と、見掛けの粘着力c'および$tan\phi'$の関係を示したものである。この結果によると、せん断変位量が増加するにしたがって、すべき面のせん断強さが低下することがわかる。